Subdivision into i-packings and S-packing chromatic number of some lattices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subdivision into i-packings and S-packing chromatic number of some lattices

An i-packing in a graph G is a set of vertices at pairwise distance greater than i. For a nondecreasing sequence of integers S = (s1, s2, . . .), the S-packing chromatic number of a graph G is the least integer k such that there exists a coloring of G into k colors where each set of vertices colored i, i = 1, . . . , k, is an si-packing. This paper describes various subdivisions of an i-packing...

متن کامل

On the packing chromatic number of some lattices

For a positive integer k, a k-packing in a graph G is a subset A of vertices such that the distance between any two distinct vertices from A is more than k. The packing chromatic number of G is the smallest integer m such that the vertex set of G can be partitioned as V1, V2, . . . , Vm where Vi is an i-packing for each i. It is proved that the planar triangular lattice T and the 3-dimensional ...

متن کامل

Packing chromatic number versus chromatic and clique number

The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...

متن کامل

The S-packing chromatic number of a graph

Let S = (a1, a2, . . .) be an infinite nondecreasing sequence of positive integers. An S-packing k-coloring of a graph G is a mapping from V (G) to {1, 2, . . . , k} such that vertices with color i have pairwise distance greater than ai, and the S-packing chromatic number χS(G) of G is the smallest integer k such that G has an S-packing k-coloring. This concept generalizes the concept of proper...

متن کامل

Packing Chromatic Number of Enhanced Hypercubes

The packing chromatic number χρ(G) of a graph G is the smallest integer k for which there exists a mapping π : V (G) −→ {1, 2, ..., k} such that any two vertices of color i are at distance at least i+ 1. In this paper, we compute the packing chromatic number for enhanced hypercubes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ars Mathematica Contemporanea

سال: 2015

ISSN: 1855-3974,1855-3966

DOI: 10.26493/1855-3974.436.178